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ABSTRACT

Small-scale interplanetary magnetic flux ropes (SMFRs) are similar to ICMEs in
magnetic structure, but are smaller and do not exhibit ICME plasma signatures. We
present a computationally efficient and GPU-powered version of the single-spacecraft
automated SMFR detection algorithm based on the Grad-Shafranov (GS) technique.
Our algorithm is capable of processing higher resolution data, eliminates selection bias
caused by a fixed ⟨B⟩ threshold, has improved detection criteria demonstrated to have
better results on an MHD simulation, and recovers full 2.5D cross sections using GS
reconstruction. We used it to detect 512,152 SMFRs from 27 years (1996 to 2022) of
3-second cadence Wind measurements. Our novel findings are: (1) the radial density
of SMFRs at 1 au (∼1 per 106km) and filling factor (∼35%) are independent of solar
activity, distance to the heliospheric current sheet (HCS), and solar wind plasma type,
although the minority of SMFRs with diameters greater than ∼0.01 au have a strong
solar activity dependence; (2) SMFR diameters follow a log-normal distribution that
peaks below the resolved range (≳ 104 km), although the filling factor is dominated
by SMFRs between 105 to 106 km; (3) most SMFRs at 1 au have strong field-aligned
flows like those from PSP measurements; (4) in terms of diameter d, SMFR poloidal
flux ∝ d1.2, axial flux ∝ d2.0, average twist number ∝ d−0.8, current density ∝ d−0.8,
and helicity ∝ d3.2. Implications for the origin of SMFRs and switchbacks are briefly
discussed. The new algorithm and SMFR dataset are made freely available.
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1. INTRODUCTION

It is well-known that the solar wind’s magnetic field is only well described by the Parker spiral
model on average; at a given point in time, fluctuations deflect the measured magnetic field away
from the Parker spiral prediction. Often, the magnetic field fluctuations are correlated with velocity
fluctuations, so most early studies viewed them as non-interacting transverse Alfvén waves (e.g.
Belcher & Davis (1971)). However, observations showed that solar wind fluctuations, even when
Alfvénic, usually exhibit signatures not consistent with pure Alfvén waves, suggesting the presence
of nonpropagating structures advected with the rest frame of the solar wind (Burlaga 1968; Burlaga
& Ness 1968; Burlaga & Ogilvie 1970; Burlaga & Turner 1976; Denskat & Burlaga 1977; Burlaga et al.
1990; Matthaeus et al. 1990). Various theories of solar wind fluctuations consisting of a combination
of advected structures and waves were formulated (such as Tu & Marsch (1993)). A popular version
of this idea was put forth by Borovsky (2008), wherein the solar wind is considered a sea of magnetic
flux tubes that are non-evolving fossil structures originating at the Sun’s surface, or strands of the
magnetic carpet. In this picture, flux tubes walls correspond to the observed discontinuities in the
solar wind and turbulence is restricted to within the flux tubes. However, an alternative possibility
is local generation via magnetohydrodynamic (MHD) turbulence: the cascade of helicity to large
scales can form twisted flux ropes in less than the time it takes the solar wind to propagate to 1 au
(Matthaeus et al. 2007; Greco et al. 2008; Servidio et al. 2008; Greco et al. 2009; Wan et al. 2009;
Zank et al. 2017).
Small-scale magnetic flux ropes (SMFRs) were first reported by Moldwin et al. (1995, 2000), de-

scribed as transients with magnetic field signatures consistent with flux ropes observed interplanetary
coronal mass ejections (ICMEs), but without ICME plasma signatures such as reduced temperature.
Various studies have been performed on SMFRs since then, but they were all based on very small
lists of events, a few hundred at most. The origin of these structures was debated, with two key
possibilities being local reconnection across the heliospheric current sheet (HCS) (Moldwin et al.
2000; Cartwright & Moldwin 2010) or small CMEs from the Sun (Feng et al. 2008). A significant ad-
vancement was made when Zheng et al. (2017) introduced an automated detection algorithm based
on the Grad-Shafranov (GS) technique (for a brief overview of the GS technique, which plays an
important role in this work, see Appendix A). The detection algorithm was applied to produce a
catalog of 74,241 SMFRs over 21 years of Wind measurements (Hu et al. (2018); referred to as the
“original catalog”, generated with the “original algorithm”, hereafter).
Considering the large number of SMFRs, are they really transient structures, or are they an essential

component of the solar wind? Hu et al. (2018) pointed out that their results were consistent with
considering the solar wind as a sea of flux tubes due to the abundance of SMFRs (∼25% of the time
is contained in an SMFR in their catalog). Recently, in a systematic study SMFR properties using
machine learning, we found that there is essentially no difference between SMFRs and “background”
solar wind other than differences imposed by the fixed ⟨B⟩ > 5 nT threshold in the original algorithm
(Farooki et al. 2023; manuscript submitted to ApJ). Similarly, Zhai et al. (2023) found that the
properties of most SMFRs are the same as the properties of the background solar wind. Although



3

these observations suggest that SMFRs are not transients, this is complicated by the observation of
a strong solar cycle and HCS proximity dependence for SMFRs in the original catalog, seemingly
consistent with the hypotheses of generation via reconnection across the HCS, small CMEs, or even
solar eruptions that travel with the HCS as their conduit (Higginson & Lynch 2018).
Application of the GS-based automated detection algorithm to data from the Parker Solar Probe

(PSP) (Chen et al. 2020, 2021; Chen & Hu 2022) has shown that static SMFRs with low Alfvénicity
(correlation between velocity and magnetic field fluctuations) are rare near the Sun compared to 1
au, but including events with high Alfvénicity gives a comparable number. The original detection
algorithm excluded Alfvénic events because the GS equation is only valid for magnetostatic struc-
tures with no velocity fluctuations (Appendix A) and because torsional Alfvén waves have a similar
observational signature to flux ropes, but with high Alfvénicity (Marubashi et al. 2010; Yu et al.
2016; Higginson & Lynch 2018). However, there have also been observations of Alfvén waves inside
SMFRs (Gosling et al. 2010; Shi et al. 2021). In fact, from a theoretical standpoint, there is every
reason to expect torsional Alfvén waves to form within flux ropes due to various disturbances (see
Gosling et al. (2010) and references therein). Nevertheless, previous 1 au studies based on small
event databases did not contain many events with field-aligned flows (Gosling et al. 2010) and only a
small percentage of event candidates were excluded due to field-aligned flows in the GS-based original
catalog.
We introduce an improved version of the GS-based automated detection algorithm. Our imple-

mentation has the following improvements over the original algorithm: (1) we significantly improved
the computational efficiency so that supercomputer resources are unneeded and the algorithm can be
applied to higher resolution data (we used a consumer-level computer to process 20x higher resolution
data than the data processed by supercomputer clusters to generate the original catalog); (2) we in-
corporated the full GS reconstruction into the detection algorithm to provide more information about
the SMFRs and to eliminate the need for the threshold on ⟨B⟩ to eliminate small fluctuations; (3)
we used the generalized GS equation for the case of a field-aligned flow with a constant Walén slope
(as also done by Chen et al. (2021); Chen & Hu (2022) for PSP, but not previously done for Wind).
Beyond the new algorithm, we present new findings on the statistical properties of SMFRs. The
validity of the statistical findings is strengthened by the improved reliability of the new algorithm,
but they are based on a revised analysis, not on the improved reliability of the algorithm.
This paper is structured as follows. Section 2 describes our improved detection algorithm, Sec-

tion 3 benchmarks the algorithm against simulated measurements, Section 4 describes the data the
algorithm was applied to, Section 5 analyzes the size and occurrence of SMFRs, Section 6 analyzes
physical properties of the SMFRs, and Section 7 contains discussion and conclusions.

2. IMPROVED DETECTION ALGORITHM

2.1. Motivation

The improvements to the algorithm are motivated by a need for increased performance and the
need for a better criteria to distinguish small fluctuations and Alfvén waves from SMFRs, discussed
below.

2.1.1. Performance

The original detection algorithm is limited by its exhaustive-search nature. That is, it iterates over
every possible interval, trying every possible axial orientation. The whole process is then repeated
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Figure 1. Distribution of ⟨B⟩ (the magnetic field strength averaged over each flux rope’s interval) in the
original catalog.

with the smaller sliding window lengths. Even coarse spacing between trial axes, over a hundred
trial axes must be used and most calculations must be repeated for each orientation. This is not
only inconvenient, but limits the scientific application of the algorithm. The distribution of SMFR
durations found in the original catalog continues to increase asymptotically down to the smallest
window length used (approximately 10 minutes). Since 21 years of 1-minute cadence data required
days of supercomputer time to process, applying the original algorithm to higher cadence data to
detect smaller SMFRs would be computationally prohibitive.

2.1.2. Elimination of Small Fluctuations and the Magnetic Field Strength Threshold

Since SMFRs were originally considered to be transient structures with elevated magnetic field
strength B, and the average IMF B is 5 nT, the original algorithm required that B > 5 nT. However,
the resulting distribution of B in SMFRs in the original catalog is cut off right at the peak (Figure 1).
Therefore, it is likely that ∼50% of the SMFRs are excluded, which one can expect to cause significant
statistical bias. Indeed, as mentioned in the introduction, we have previously demonstrated that the
physical properties of SMFRs are mostly the same as the background solar wind other than the fact
that B > 5 nT.
Is requiring B > 5 nT an effective method to exclude small fluctuations? Despite this threshold, it

appears that the original catalog contains many events that appear to simply be a small fluctuation
in the magnetic field direction. We find that an objective way to distinguish small fluctuations from
SMFRs is to perform the full GS reconstruction on a given interval to test if it really contains a flux
rope (closed transverse field lines in 2D). Figure 2 shows an example. While Figure 2 (a) exhibits
a magnetic field signature consistent with the crossing of a flux rope at a high impact parameter,
the reconstruction in Figure 2 (b) does not confirm the existence of any closed transverse field lines.
It is possible that the event is a flux rope that the spacecraft passed through far from its center,
but it could just be a small kink in the magnetic field. The original detection algorithm only tests
the hypothesis that each transverse field line is crossed twice. We should also check whether any of
those transverse field lines are closed. Using GPUs, it is not computationally prohibitive to perform
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Figure 2. Magnetic field measurements in the flux rope coordinate system (a), as well as the GS recon-
struction (b), of event #74238 from the original catalog. In (a), the red, green, and blue lines correspond to
Bx, By, and Bz, respectively. In (b), the brightness represents A. For a flux rope, we expect that By should
exhibit bipolarity and Bz should increase towards the center, consistent with the signature observed in (a).
Despite that, the GS reconstruction in (b) does not contain any closed transverse field lines.
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Figure 3. (a) Distribution of Walén slope calculated using vHT for the events original catalog. The
histogram is cut off at ±1.5. Note that for most events, the Walén slope |Rw| > 0.3, in contrast to the
requirement the original detection algorithm that all events have |Rw| < 0.3. The green distribution is
the subset where the linear correlation is strong, showing that for the events with a well-determined slope,
the Walén slope follows a normal distribution. (b) Same as (a) except using the reference frame agnostic
method to determine Alfvénicity as introduced by Chao et al. (2014). In this case, the slope is the relationship
between dv/dt and dvA/dt , which does not depend on the reference frame.

the GS reconstruction of many sliding windows. As Figure 2 shows, this can eliminate many false
positives and thus make the results more reliable.

2.1.3. Alfvénicity

We have discovered that the apparent difference in abundance of Alfvénic events between PSP and
1 au is primarily due to a difference in methodology, not a physical difference. The Walén slope
measuring Alfvénicity must be found in the zero electric field frame of reference vHT (Appendix A),
not in the average velocity frame. But prior to PSP applications, the flux rope velocity vFR was
approximated as ⟨v⟩ instead of vHT due to the large volume of data and the computational inefficiency
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of the original detection algorithm. This has a significant effect on the calculation of the Walén slope,
since the component-by-component Walén slope must be calculated in the HT frame (Khrabrov &
Sonnerup 1998; Paschmann & Sonnerup 2008).
The difference between using ⟨v⟩ and vHT can be seen as follows: Suppose that the total bulk

velocity is the background velocity plus a fluctuation v0 + δv, and that the fluctuation is a field-
aligned flow such that it can be written in terms of the Alfvén velocity vector as δv = RwvA, where
the constant of proportionality Rw is the Walén slope. If one attempts to evaluate Rw using the
average velocity frame instead of the HT frame by estimating δv = v − ⟨v⟩, an issue arises: this
approximation is only valid if ⟨vA⟩ = 0. In a magnetic flux rope, ⟨vA⟩ may have a nonzero component
in the x̂ direction and always has a significant nonzero component in the ẑ direction (Figure 20).
Therefore, the different components will be misaligned, making it impossible to calculate the Walén
slope, in fact resulting in an estimated Walén slope near zero even for an event with significant field
aligned flows.
We calculated the Walén slope for each event in the original catalog using vHT instead of ⟨v⟩ using

the Wind (Wilson et al. 2021) measurements of magnetic field (via the MFI instrument; Lepping
et al. (1995)) and plasma moments (via the SWE instruments; Ogilvie et al. (1995)). Figure 3 (a)
shows the distribution of the Walén slope for the events in the original catalog. Even though the
original algorithm excludes events with |Rw| > 0.3, less than 25% of the events actually meet that
threshold when vHT is used to calculate the Walén slope.
One might wonder if vHT artificially introduces the field-aligned flow by minimizing v×B. Figure 3

(b) shows the same result using a reference-frame independent method to determine Alfvénicity (Chao
et al. 2014): instead of taking the slope of δv ∝ vA, one can take the derivative of both sides and then
the slope can be evaluated in any reference frame. The result using the frame-independent method
is the same as the result obtained using the HT frame: most events in the original catalog at 1 au
are highly Alfvénic.

2.2. Optimization

An easy way to optimize the detection algorithm is to take advantage of the fact that the same
computations are applied to each interval. In Python, loops are slow. This problem can be avoided
by processing multiple intervals simultaneously via matrix computations. On a CPU, this benefit is
a consequence of the limitation of the Python language. However, GPUs can take greater advantage
of this, because unlike CPUs, they apply a single instruction to large arrays in parallel. In our
implementation, we utilize batch processing and run our code on a GPU using the PyTorch software
package for matrix computations. The interpolation operation necessary for the computation of Rdiff

is made possible by using another software package (https://github.com/aliutkus/torchinterp1d).
The use of GPU processing allows our implementation to process large volumes of data on a consumer-
grade computer instead of a supercomputer.
We further improved the performance of the algorithm by reducing the search space for axial

orientation ẑ (Figure 20). This is possible due to the following realization. For an acceptable
flux rope interval, the same field line is observed at the beginning and end. Since the poloidal
flux function A is a field line invariant, the final A equals the last A, that is, Af = A0. Since
the difference in A is given by integrating By (Appendix A), the integral of By over the interval
must then be zero. Therefore, the average magnetic field vector must be perpendicular to ŷ, since
⟨B⟩ · ŷ = ⟨B · ŷ⟩ = −|vx|

∫ t0+∆t

t0
Bydt/∆t = 0 (where the average ⟨B⟩ must be calculated as the

https://github.com/aliutkus/torchinterp1d
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integral of each component over the interval divided by the length, rather than the mean of each
component).
So ⟨B⟩ is perpendicular to ŷ, in addition to vFR (following from the definition of the vertical

direction ŷ; Figure 20). Then, even before knowing ẑ, ±ŷ is already determined. This explains why
the uncertainty in ẑ, often referred to as azimuthal uncertainty when viewed in the GSE coordinate
system, is typically much greater than the uncertainty in ŷ, as observed by Hu & Sonnerup (2002).
Once ±ŷ is known, A is known up to a constant factor of ±vx. However, for the purpose of finding ẑ,
only the relative values of A are needed to specify the field line corresponding to each measurement,
so we can simply normalize A to start at 0 and peak at 1.
To find ẑ, we still need to minimize the difference residue Rdiff(θ) (Appendix A) where θ is the

angle between ẑ and vFR about ŷ. The only component of Pt affected by the choice of θ is B2
z/2µ0,

so we only need to minimize the contribution from the Bz term (and Bz itself is a field line invariant;
Appendix A). Originally, we would have to calculate Bz(t) = B(t) · ẑ for each ẑ, then linearly

interpolate the values before and after the peak A onto A(t), yielding B
(1)
z (A) and B

(2)
z (A). Finally,

we would calculate Rdiff =

√〈
(B

(2)
z (A)−B

(1)
z (A))2

〉
/(max(Bz) − min(Bz)) for each θ. However,

linear interpolation is a fairly expensive operation. Instead of performing it each time, we can take
advantage of the fact that the normalized A is fixed and is not affected by θ, so the linear interpolation
for each point is just a linear combination of the original values of Bz with coefficients independent
of θ or ẑ. So if instead we interpolate the vector B by interpolating its components, we can construct
an N × 3 matrix of difference vectors B(2)(A) − B(1)(A), where N is the number of measurements.
If we multiply it by the 3 × M matrix of M possible ẑ orientations, each element of the resulting
N ×M matrix is B

(2)
z (A)−B

(1)
z (A) for the measurement corresponding to the row and the possible

ẑ corresponding to the column. Squaring the values of the matrix and summing over the rows yields
the numerators for calculating Rdiff(θ). From there, the same procedure can be applied to the original
N × 3 matrix of measured magnetic field vectors B to obtain Bz(t) for each orientation, which can
then be used to find max(Bz)−min(Bz) and thus the denominator of Rdiff .
The procedure outlined above makes the assumption that the interval is perfectly selected and

does not need to be trimmed further. Making the first assumption requires the use of very narrowly
spaced sliding window lengths. For example, Hu et al. (2018) used 1-minute cadence data with sliding
windows 5 minutes apart in length, trimming the window to be shorter if necessary. With this new
procedure, a 1-minute separation between window lengths would be necessary due to the assumption
that the interval is already trimmemd. However, this only requires visiting each flux rope candidate
at most five additional times, whereas the reduction by finding ŷ first is significantly greater.
Another assumption made is that vFR×⟨B⟩ ≠ 0. When this relationship is not satisfied, we need to

resort to a full trial-and-error process. We do this by trying every possible ŷ (with 1 degree spacing)
and finding the one that has a single stationary point, the absolute value of the last A value being less
than 10% of the absolute value of the peak A, and that minimizes Rdiff when ŷ is not well specified.
We evaluate ŷ as being well-specified by taking the cross product of the estimated ŷ and vFR, and
validating the average magnetic field along this perpendicular direction is not less than 10% of the
average of the magnetic field magnitude. The handling of this edge case is not particularly important
and only introduces a minimal performance impact, since the average magnetic field direction being
parallel to the velocity is rare (even near the Sun, where the magnetic field is approximately radial,
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Figure 4. Flow chart describing the improved detection algorithm.

the Parker Solar Probe’s own motion perpendicular to the radial direction ensures that the velocity
relative to the spacecraft is not purely radial).
The new procedure for finding the axial orientation provides a substational improvement in the

performance of the algorithm. Additionally, it makes it easy to increase the angular precision from
more than 10 degrees to less than 1 degree without an absurd computational cost, since the search
for ẑ is now reduced to varying 1 angular parameter instead of every combination of two angular
parameters. For example, if both the azimuthal and latitudinal separations were 1 degree, over 30,000
trial axes would be necessary for every interval.

2.3. Algorithm

In this section, we describe the algorithm step by step for reproducibility purposes. The overall
procedure is outlined in Figure 4. Essentially, the algorithm checks every single interval for a set of
interval lengths, tests whether the interval is compatible with a flux rope signature: (1) magnetostatic
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or MHD equilibrium is validated by finding and validating vHT; (2) smoothness of the magnetic field
in the interval at the given scale is tested by comparing the raw measurements to a smoothed version
of the measurements; (3) the optimal 2D orientation is found and the hypothesis of a 2D structure
where every field line is crossed twice is tested by verifying that A that P ′

t = P ′
t(A); (4) the structure

is checked for closed field lines via GS reconstruction; (5) the remaining sliding windows are filtered
to avoid overlap, giving preference to larger event candidates over smaller ones.

2.3.1. Selecting Smooth Intervals Exhibiting MHD Equilibrium

First, we process the data using a set of sliding windows. Our goal is to use window lengths that span
multiple orders of magnitude, and GPUs have limited memory, so some additional steps are required.
We set a maximum processing resolution Nmax. If the sliding window length Nwindow > Nmax, then
we must downsample the data so that the windows are not prohibitively memory intensive. For
example, using 3 second cadence data, a window length approximately equal to 3 days would contain
approximately 105 data points. We find that Nmax = 64 does not significantly affect the results
compared to higher resolutions despite providing a substantial performance gain. To downsample
the data, we first perform a boxcar average with both length and step size set to ⌊N/Nmax⌋, so that
the remaining downsampling factor is less than a factor of 2. Then, we use linear interpolation to
resample the data so that the window length becomes N = Nmax. If N < Nmax, then the window
length is left as is. To ensure that the event’s magnetic field fluctuation is “smooth” so that the
downsampling and smoothing employed throughout the algorithms is valid, we require that the
average cosine angle between the downsampled vectors and their moving average with kernel size
⌊N/10⌋ (rounded up to the nearest odd number if even) be at least 0.98.
Next, we evaluate vHT and the average B (using the trapezoid rule since the same is used for

evaluating the poloidal flux function A) for each sliding window. Using these quantities, we evaluate
the vertical direction ŷ. The correlation coefficient for vHT (Khrabrov & Sonnerup 1998) is required
to be at least 0.95, and By is required to have exactly one change of sign after (applying the same
filter used for the smoothness check to avoid excluding events containing embedded fluctuations).

2.3.2. Finding 2D Orientation and Validation of 2D Hypothesis

For the sliding windows that remain, we evaluate the minimum residue ẑ with 256 trial axes
centered around the direction of the average magnetic field uniformly spread between ±90◦ about
the estimated ŷ. The selected ẑ is guaranteed to result in a trimmed A, as it is perpendicular to the
already estimated ŷ. The resolution n of the distinction between x̂ and ẑ is 180◦/256 ≈ 0.7◦, but
our benchmarking suggests that the actual uncertainty is on the order of 10◦. We require Rdiff < 0.3
(Appendix A) separately for Bz and Pt. Previous GS-based detection studies used a stricter threshold
for Rdiff since they did not directly solve the GS equation to validate the flux rope structure and
relied primarily on a low Rdiff for detection. However, many events studied using GS reconstruction
in the literature had significantly higher values of Rdiff , and even flux ropes in MHD simulations
can have higher Rdiff . We find that in conjunction with our validation through GS reconstruction,
a threshold of 0.3 provides satisfactory results. Note that we do not use the extra factor of 1/

√
2

in our definition of Rdiff , which would make our threshold just over 0.2 by the definition used in Hu
et al. (2018).
Since it seems that most SMFRs have non-negligible Alfvénicity (Figure 3), we must account for

the Alfvénicity when calculating the generalized transverse pressure Pt. We use the Walén slope to
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estimate a constant Alfvén Mach number in the flux rope frame of reference MA, so that we may use
Equation A2 to calculate the generalized Pt. When the Walén slope is greater than 0.3, we require
that the correlation coefficient between v − vHT and vA be at least 0.8, and we exclude events with
a Walén slope greater than 0.9 to avoid a singularity in Equation A2 (Chen et al. 2021; Chen & Hu
2022).

2.3.3. Full GS Reconstruction

We perform the full GS reconstruction for all of the sliding windows that pass the above tests.
(Sonnerup et al. 2006; Teh 2018). The settings must work well when applied to a large number
of events automatically without any manual adjustments. This is especially important due to the
sensitivity of solving the GS equation as an initial value problem. Based on our experimentation, we
find that it is suitable to use a third-order polynomial to fit Pt(A) and take its derivative to derive
the current density used for the reconstruction. The validity of the polynomial fit is ensured by
requiring the events to have Rfit no more than 0.3. Additionally, we require that the axial current
density increases towards the center of the closed region, since real flux ropes carry strong axial
currents that are strongest at their center. We added this requirement because SMFRs should carry
strong axial currents to generate their poloidal magnetic field, and because in the MHD simulation
we benchmarked the algorithm on, all events where the reconstruction did have a monotonically
increasing current density were false positives.
The size of the reconstruction domain is fixed at 11x11 pixels with step size ∆y = 0.1∆x, and

we use the standard three-point smoothing introduced in (Hau & Sonnerup 1999) for the stability
of the numerical integration. The 1D measurements are downsampled to 11 data points and the
reconstructed cross section is 11x11 pixels (5 pixels above and below the spacecraft path). For
values of A outside of the measured range, the lower tail of Pt(A) is extrapolated using a decaying
exponential so that the current density decays outside of the measured field lines, while for the
upper tail, it is simply allowed to continue according to the polynomial fit. Once the reconstructed
map is obtained, events without a core with closed transverse field lines according to the procedure
previously mentioned are excluded. We also require that the closed region be more than 4 pixels
wide and 4 pixels tall and that it overlap with the strip measured by the spacecraft. The procedure
for finding the core region is described in Appendix B.

2.3.4. Cleanup of Overlapping Windows

Once the candidate windows are obtained for a given sliding window size, we follow the same
procedure as in the original algorithm: For a given window length, we use the greedy algorithm to
remove overlapping events. However, rather than prioritizing events by their end time, we prioritize
them by Rdiff . The gaps between larger events are filled with events detected from smaller sliding
window sizes, but larger events are prioritized over smaller events.

3. BENCHMARKING AGAINST SIMULATED MEASUREMENTS

3.1. Small Fluctuations

Since the number of events detected is so large and most of them are quite short, one could
reasonably be concerned that a significant portion of the detected events are not flux ropes at all,
but rather small fluctuations, such as noise or waves. Here, we demonstrate that such fluctuations
are not a significant source of false positives.
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Figure 5. Examples of the results on simulated timeseries. Intervals detected as flux ropes are shaded. The
columns are: (a) background field plus noise (b) background field plus pure Alfvén wave (c) MHD simulation

First, we generate simulated, noisy data. All vector quantities here are in radial-tangential-normal
(RTN) coordinates. We generate 1 day of 1 minute cadence simulated data. The magnetic field data
is a constant Parker spiral aligned field plus Gaussian noise N with mean µ and standard deviation
σ: B = 5nT(

√
2R̂ −

√
2T̂) + N (µ = 0, σ = 0.5 nT). The proton number density np = N (µ =

10 cm−3, σ = 1 cm−3), the proton temperature T = N (µ = 1× 105K, σ = 1× 104K), and the proton
bulk velocity is radial plus noise v = 400 km s−1R̂ +N (µ = 0, σ = 10 km s−1). The data is plotted
in Figure 5 (a). Additionally, we generate a similar artificial data interval with a simple Alfvén wave
added: B → B+sin((2π/60min)t)N̂ and v → v+vA. The data with the wave is plotted in Figure 5
(b).
As expected, neither the noisy simulated data nor the wavy simulated data had any flux ropes

detected with windows ranging from 10 to 360 minutes. Though we did not reproduce it here, after
many repetitions with a higher σ for the magnetic field noise, we managed to get one single event
of only 10 data points to be detected. However, that is far too rare to explain the large number of
SMFRs that are detected in a given day of real data. Also not shown here, we have verified that
even with the velocity fluctuations in the simulated data removed or with a magnitude lower than
the Alfvén speed, the simulated wave is not detected as an event by our algorithm. Thus, noise and
pure transverse Alfvén waves are not likely to be a significant source of false positives.

3.2. MHD Simulation

To validate the applicability of our method to realistic SMFRs, we tested our new algorithm on
SMFRs generated from a 2.5D MHD turbulence simulation.
We test our algorithm in numerical simulations of compressible MHD (CMHD). The CMHD equa-

tions are solved in a 2.5D square box of length 2πL0 in either direction, with 4096 points per side,
using a pseudo-spectral code as described in Ref. (Vásconez et al. 2015; Perri et al. 2017; Pecora
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Figure 6. Results from applying the improved algorithm to a 2.5D MHD turbulence simulation. The
brightness represents the strength of Bz and the blue streamlines represent the transverse field lines. The
dashed lines are virtual spacecraft paths through the simulation. The square boxes represent sliding window
intervals that were detected as flux ropes by the new algorithm. The rectangular boxes represent the intervals
detected as events by the original algorithm. Green boxes are classified as true positives, whereas red boxes
are classified as false positives.

et al. 2021). The simulation was performed in the x-y plane with a mean magnetic field B0 = 1
along the z direction. Velocity and magnetic field fluctuations have all three Cartesian components.
The algorithm is stabilized by fourth-order hyperviscosity that suppresses very small-scale, numerical
effects. The parameters of the simulation are appropriate to describe solar wind conditions, magnetic
fluctuations are such that δb/B0 = 1/2 and plasma β ∼ 0.5, with δb total r.m.s magnetic fluctuation
amplitude and β ratio of kinetic to magnetic pressures. The initial fluctuations are chosen with
random phases, for both magnetic and velocity fields, in a shell of Fourier modes with 3 ≤ |k| ≤ 5.
The decaying CMHD simulation quickly develops turbulence and small-scale dissipative structures.
The magnetic field power spectrum (not shown here) manifests a typical scaling P (k) ∝ k−5/3. The
turbulent pattern is represented in Figure 6.

Figure 6 shows the results of applying the detection algorithm to the MHD simulation (downsampled
to 512x512). Virtual spacecraft were sent through several paths to take virtual measurements, to
which the detection algorithm was applied. An example for a single spacecraft path is shown in
Figure 5 (c). Also included are rectangles representing events detected using the original algorithm.
We automatically classify a detected event as a true positive if (1) the interval has a closed field line
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Table 1. Quantitative comparison between both algorithms when applied to the MHD simulation and with or
without events below 30 data points.

Algorithm Time per row True Positive (TP) TP (N > 30) Good Reconstruction (Rec) Rec (N > 30)

Original ∼4m 14 (42%) 12 (57%) N/A N/A

New ∼2s 18 (64%) 14 (100%) 35% 79%

and (2) the true By has only one inflection point (after smoothing). True positives are labeled green
while false positives are labeled red.
Although the original algorithm occasionally picks up good events that the new algorithm misses,

in many cases it either incorrectly combines multiple events into one, or it detects some fluctuations
at the boundary or within a flux rope. In contrast, the new algorithm usually identifies the flux rope
correctly, even if it does not have an accurate reconstruction. However, for the smallest window sizes
with less than 30 data points, even the new algorithm picks up some none-flux rope fluctuations as
SMFRs. Quantitative comparison is provided in Table 1. From this comparison, it is clear that the
new algorithm is both significantly faster than the original algorithm and significantly more reliable.
Manual comparison between the reconstructed cross sections and the true magnetic field geometry

suggests that the algorithm reliably detects the presence of flux ropes (86% of the time). However,
the reconstruction is only reliable 35% of the time. This appears to be because when the spacecraft
crosses the flux rope close to the edge, the wrong boundaries are selected, so the reconstruction is
inaccurate even though there is excellent agreement with the spacecraft measurements over the 1D
path that it crossed. It is not possible to consistently distinguish which reconstructions are reliable
because even the cases with an accurate reconstruction can exhibit a relatively high Rdiff , whereas the
reconstructions that are way off can sometimes have a low Rdiff . Therefore, for additional validation
of the reconstruction, it would be valuable to incorporate multi-spacecraft analysis in future studies.
For the purposes of this study, due to the focus on the long-term trend, we must work within the
limitation of single spacecraft measurements. Even when the reconstructed geometry is inaccurate,
the order of magnitude of estimated parameters such as size and current density are usually reliable.
It is worth noting that, at least for this simulation, the large events (greater than 30 data points)

tend to be reliable, wheras the small events (less than 30 data points) tend to be unreliable. However,
this may be due in part to the scale of the flux ropes in the simulation being larger to begin with.
This is because it is easier to randomly satisfy a false hypothesis with a small number of data points,
but events with many data points can usually be more reliably validated.
In Figure 7, we show the detection algorithm’s output for four example events based on the simu-

lated data. The top two events are “good” results, whereas the bottom two are “bad” results. In all
four cases, the algorithm correctly identified a flux rope, but in the “bad” cases, the reconstruction is
inaccurate. Unfortunately, we have not been able to find any criteria that can consistently evaluate
the reliability of a reconstruction. For example, the bottom events have lower Rdiff than the top left
event. Setting a lower threshold on Rdiff does not appear to improve the quality of the events overall.
In most cases, bad events are very small (less than 30 data points), but there are exceptions (such
as the event on the bottom right of Figure 7). Bad events tend to have a highly inaccurate ẑ, but
of course there is no way to know that without the ground truth. This highlights the limitation of
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Figure 7. Four events detected by virtual spacecraft from the MHD simulation. Top left: Relation between
B and np. Top right: P ′

t as a function of A (Appendix A). Center left: Relationship between Alfvén velocity
(as a vector) and the velocity fluctuations. Center right: Measured magnetic field components and strength
(solid lines) and model magnetic field components (dashed lines) in the flux rope coordinate system. Bottom:
Reconstructed cross section with contours at equally spaced values of the flux function A (in the estimated
flux rope coordinate system), along with the ground truth magnetic field (in the simulation coordinate
system, not the estimated flux rope coordinate system).
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single-spacecraft measurements: Even when measuring a perfectly time-static and 2D plasma, the
spacecraft cannot determine the true ẑ and A. It can only test whether a given interval satisfies the
hypothesis of being 2D and having an A with a single stationary point given a certain ẑ by checking
if certain necessary conditions are approximately met. Without a measurement of the magnetic field
gradient, there are no sufficient conditions. Additional context may be gained by comparing the
event’s measurements to the surrounding measurements, which is a potential area of future research
to improve single-spacecraft SMFR detection.

4. APPLICATION TO WIND DATA

We applied our new algorithm, described in Section 2, to 27 years of Wind data (Wilson et al.
2021) from years 1996-2022. Each year was processed separately. For magnetic field measurements,
we used the Magnetic Fields Instrument (MFI; Lepping et al. (1995)) 3-second vector magnetic field
measurements. For measurements of the bulk plasma parameters, we used the proton moments
from the 3DP instrument (Lin et al. 1995) computed on-board at a 3-second cadence. To calculate
gas pressure p and Alfvén speed vA, we only included the proton contribution due to the lack of
continuously available quality electron and alpha particle moments. We used linear interpolation to
bring the two datasets onto a set of consistently spaced points, allowing for a maximum of a 6-second
gap between the points used for interpolation. Points where missing values existed were recorded
and then the remaining gaps were filled using linear interpolation. A number density less than 1 per
cc was considered missing, since the quality of the plasma measurements is poor when the measured
number density is very low.
The 3DP measurements appear to occasionally have massive spikes, so before interpolating each

property onto the consistently spaced points, we applied a spike removal algorithm based on Roberts
(1993). Each point in a 100-point window is marked bad if it is distanced from the mean of the window
by more than six standard deviations. We repeat this twice rather than iteratively processing each
window as done by Roberts (1993) to simplify the algorithm and make it possible to compute in
parallel. Additionally, due to limited telemetry, there is some digitization effect present in the 3DP
data which introduces sudden jumps to the data. To alleviate that, we applied a 5-point running
average to the plasma parameters.
After preparing the dataset, we applied the detection algorithm with 195 logarithmically spaced

sliding windows from 10 (30 seconds) to 105 data points (approximately 3.5 days). The largest
window sizes are just for thoroughness: the important range is up to 105 seconds (order of days),
since that is the typical order of magnitude of CME durations at 1 au. We do not expect to see
SMFRs larger than CMEs. A total of 594,857 events were detected, but after restricting the list to
only those with fewer than 10% of the interval containing missing values, 512,152 remained.
Despite the large volume of high-resolution data, our implementation was able to process each year

of data in only about a few minutes on a consumer-level GPU (Nvidia GeForce RTX 3090). Most
of the time is spent on the GS reconstruction, without which a year of data can be processed in
less than a minute. The high-performance implementation with GPU acceleration made it possible
to do much more than could be easily done with the original implementation. We did not use any
supercomputer resources and the improved algorithm also provides GS reconstructions.
Figure 8 displays an example of the data used for detection for a single day. This figure is repre-

sentative of typical quiet solar wind conditions. Although on average, the magnetic field is aligned
with the Parker spiral, there are usually significant rotations in the magnetic field direction. Nearly
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Figure 8. Example of input measurements for a single day, with event intervals shaded gray.

half of the total time is detected as a flux rope. Unlike ICMEs, most of the flux ropes do not have
extremely high magnetic field strength, nor do they necessarily have decreased proton temperature,
nor do they appear to have any expansion signature (as the velocity does not change much). The
sizes of the SMFRs vary significantly, ranging from less than a minute to more than an hour. The
larger ones are less frequent but occupy a significant portion of the total time; the smaller ones occur
in larger numbers but don’t compose the majority of the solar wind.
Figure 9 shows two examples outputs from our detected algorithm (one small, one large). Note that

both events have |Rw| > 0.3, but are inconsistent with an interpretation of them as Alfvén waves due
to the nonzero change in Bz and the anticorrelation between B and np (Vellante & Lazarus 1987).
The effect in the field aligned flow can be seen in the green points in the velocity scatter plot, which
change sign along with By. Even though Rdiff and Rfit are high compared to the thresholds used by
previous studies, the model fits the data very well. The reconstructed cross section shows that GS
reconstruction applied to the measurements reveals closed transverse field lines, validating the flux
rope nature of the events. Unlike CMEs, neither the small event (about 3 minutes long) nor the long
event (about 2 hours long) have an elevated magnetic field strength. However, many of the detected
events do have large changes in the field strength, although most do not exhibit other signatures of
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Figure 9. Two examples of real events detecting from Wind data. The first event (left) is a relatively small
event while the second event (right) is a relative large event. Top left: Relation between B and np. Top
right: P ′

t as a function of A (Appendix A). Center left: Relationship between Alfvén velocity (as a vector)
and the velocity fluctuations. Center right: Reconstructed cross section with contours at equally spaced
values of the flux function A. Bottom: Measured magnetic field components and strength (solid lines) and
model magnetic field components (dashed lines) in the flux rope coordinate system.

CMEs such as velocity expansion signature or very low temperatures. It seems that the change of
magnetic field strength depends on the geometry of the flux rope. Unlike CMEs, SMFRs do not need
large changes in magnetic field strength because they are usually not force-free.
In the following sections, we statistically analyze various aspects of the new database of events.

For additional context, we used the classification scheme introduced by Xu & Borovsky (2015) to
distinguish SMFRs in ejecta, sector reversal, streamer belt origin, and coronal hole origin plasma
streams. Since the plasma quantities in Xu & Borovsky (2015) are calibrated for 1 hour averaged
OMNI2 data, which is primarily based on Wind ’s Faraday cup instrument SWE, we evaluated the
solar wind classification based on SWE data downsampled to 1 hour, then evaluated each event’s
classification as the the nearest hourly classification.

5. SMFR SIZE AND OCCURRENCE
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Figure 10. (a) Histogram of the duration (represented as a scatter plot to comparing with the fitted curves).
Each black point in the scatter plot represents the number of events detected for a particular sliding window
scaled by the bin separation to make it represent the estimated probability density. The points in the scatter
plot are centered at the geometric mean of the corresponding window size and the window size after it so
that it is centered between the two values in log space. The three curves are log-normal distribution fits with
different values of µ. Note that µ and σ are location and scale parameters for the log-normal distribution,
not the mean and standard deviation. They are defined so that the natural logarithm of a log-normal
distribution is normally distributed with mean µ and standard deviation σ. The pink line is a power law
fit to the range between 10 minutes and 6 hours. (b) Diameter distribution following the same format as
(a). The shaded region covers diameters that are below (600 km s−1)(30 s). Flux ropes with diameters below
this cutoff and orientations perpendicular to the radial direction can be too short for the smallest sliding
window. The distribution for each solar wind type is also plotted separately with its own fit.

5.1. Size Distribution

Figure 10 (a) displays the distribution of the duration of the detected events. Over the range from
10 minutes to 6 hours, it appears to exhibit a power law similar to the result in the original catalog.
However, with the added orders of magnitude, a deviation from a simple power law becomes apparent,
and there is significant curvature. Looking closely at the power law portion of the distribution from
our figure as well as the figures in in (Hu et al. 2018), there is already a slight curvature even for
the limited range. Our expanded range of durations makes the deviation of the power law obvious.
Log-normal distributions are very common in nature and in the solar wind. It is very common for a
log-normal distribution to be mistaken for a power law distribution when viewed over a limited range.
This motivates fitting the data to a log-normal distribution, which we demonstrate in Figure 10 (a).
Clearly, the log-normal distribution provides a superior fit. However, the peak of the distribution is
below 30s, the smallest sliding window used in the detection process. Therefore, the distribution is
not fully resolved. Moreover, a fit of similar quality is attained for an arbitrary choice of the peak
as shown in Figure 10 (a). Therefore, we cannot determine the exact parameters of the log-normal
distribution. Still, a log-normal distribution clearly fits the data very well over the resolved range.
The only significant deviation from log-normal in Figure 10 (a) appears to be a discontinuity around

1 minute. Considering that 1 minute and 30 seconds corresponds to 30 data points, this may be a
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consequence of the unreliability of SMFRs detected from such a small number of data points. The
distribution appears to continue to increase all the way down to the smallest scales available from
Wind plasma measurements. Plasma data of higher cadence and quality is thus essential to study
SMFRs at even smaller scales.
In Figure 10 (b), we consider the spatial scale distribution. We estimated the diameter of the flux

rope as the circle with area equivalent to the closed region in the reconstructed cross section. The
spatial width ∆x of the cross section was estimated using the derived orientation ẑ (to determine
x̂, the direction of motion through the cross section; Figure 20), velocity vFR, and duration ∆t as
∆x = |vFR · x̂|∆t. This accounts for the lengthening of the observed duration resulting from the
angle between the orientation and velocity. If it is perpendicular, then this just reduces to ∥vFR∥∆t.
Once ∆x is known, the pixels in the reconstructed cross section each have area (∆x/11)2, so the area
can be estimated by just adding the areas of the individual pixels contained in the closed region of
the cross section. The diameter can be estimated using Area = πr2 = πd2/4 =⇒ d =

√
4Area/π.

Figure 10 plots the diameter distribution separately for each solar wind type. In all cases, a log
normal distribution appears to fit the data well. Besides ejecta, all of the solar wind types have similar
log normal distributions, except that slower solar wind types are more likely to have larger SMFRs
than faster ones. This is consistent with previous studies that have found that flux tubes/ropes are
larger in the slow solar wind (Borovsky 2008; Hu et al. 2018).
The diameter distribution in Figure 10 (b) does not have a hard cutoff as in Figure 10 (a), but

instead has a smooth cutoff. The reason SMFRs below the cutoff imposed by the temporal scale
limitation can sometimes be detected is that the duration depends not only on the diameter, but
also the impact parameter and the angle between ẑ and vFR. For a given diameter and impact
parameter, if ẑ is not perpendicular to vFR, the duration will be longer. The highest typical velocity
is approximately 600 km s−1, so for a minimum window size of 30 s, one would expect the distribution
to be inaccurate below (600 km s−1)(30 s) (the shaded region in Figure 10 (b)), which is almost
precisely where the distribution begins to decrease. Therefore, it is likely that even smaller scales
exist. We cannot determine the peak of the distribution.
A small but nonzero fraction of the events have diameters below 100 km, which is approximately

the transition from MHD scales to kinetic scales. However, these events are not reliable. Besides
the inapplicability of the MHD approximation at such small scales, the temporal scale limitation
means that such small events can only be detected when ẑ at a very small angle from vFR. For
∥vFR∥ = 400 km s−1, and sliding window size 30 s, we must have that 400 km s−130 s sin(θ) = 100 km
where θ is the angle between ẑ and vFR. This yields θ ≈ 0.5◦, which is far beyond the precision
afforded by single-spacecraft measurements. Thus, we cannot confirm whether flux ropes exist in the
solar wind below MHD scales.

5.2. Lack of Variation over Solar Cycle

Figure 11 (a) shows the number of events detected from each year of data. The number is not
constant, but it doesn’t exactly correspond to solar activity, either. The points in time corresponding
to solar maxima and minima are displayed as red and blue vertical bars. The peak SMFR number
is not exactly at solar maximum and the minimum SMFR number is not exactly at solar minimum.
This implies that the SMFR counts are not directly related to solar activity, but they are related
to the solar cycle. They appear to peak in the declining phase of the solar cycle. In fact, it is well
known that the solar wind speed peaks during the declining phase of the solar cycle. This motivates
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Figure 11. (a) Displays the number of events in each year displayed as a bar plot. Overplotted in (a)
are the relative variations of the yearly averaged solar wind velocity as measured by SWE (including the
entire year, not just SMFR intervals). Additionally, the solar maxima and minima are labeled. This plot
demonstrates that without a threshold fixed to a particular value, the variations in SMFR count correspond
to velocity variations or data gaps, not solar activity. (b) Filling factor in each year containing SMFRs
(corrected for data gaps). Also included is the yearly average magnetic field strength and the filling factor
with two alternative B thresholds. (c) Filling factor in each year containing SMFRs within particular ranges
of diameters. Brighter bins indicate a higher percentage of the year contained within SMFRs of diameters
within the bin’s range of diameters. (d) Scatter plot including linear regression between each 27 day period’s
average ∥vFR∥ and number of events. The dashed line is the fitted regression and the shaded region contains
the 4σ uncertainty. Smaller points have more data gaps. The periods with no SMFRs are not included in
the scatter plot.
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the inclusion of the variation of the yearly average solar wind speed in Figure 11 (a), showing that
the number of SMFRs is directly proportional to the average speed. The only significant deviations
are during years that have major data gaps (also included in Figure 11 (a)). Figure 11 (d) confirms
that the same trend applies on a timescale of 27 days (about a synodic solar rotation). This implies
that the filling factor of the SMFRs is nearly constant over time. If the filling factor is constant and
the velocity doubles, the number of SMFRs should double. Mathematically:

dN

dt
=

dN

dx

dx

dt
=

dN

dx
v ≈ constant× v =⇒ dN

dx
≈ constant

A quantitative estimate is provided by fitting the number of events to the average velocity in a given
27 day period in Figure 11 (d), yielding an estimate of ∼1 SMFR per 106 km.
If the radial density is constant, then the filling factor containing SMFRs should also be constant.

Figure 11 (b) shows the yearly integrated duration of all of the SMFRs in a given year divided by
one year. In other words, it shows the percentage of a year contained within the events. From this
figure, it is apparent that the temporal variation is minimal. and clearly has no correlation to the
sunspot number. The variation imposed by the change of yearly average bulk solar wind speed in
Figure 11 (a) is also eliminated in Figure 11 (b). It appears that approximately 35% of the solar
wind contains SMFRs for the entire solar cycle. This may even be an underestimate, due to the fact
that the smallest scales are not resolved (Section 5) and because some of the assumptions required
in the detection process may not apply to all SMFRs. In contrast, applying the fixed 5 nT threshold
results in a strong solar cycle dependence, with the filling factor dropping severely when the yearly
average B drops below 5. Yet using the yearly average B instead of 5 nT gives virtually the same
filling factor trend as using no threshold at all, except that the value is halved. This shows that the
solar cycle dependence for the majority population is artificially imposed by the fixed 5 nT threshold.
Figure 11 (c) shows the dependence on size by plotting the filling factor (percentage of time)

contained in SMFRs within a given year and range of sizes. From here it becomes apparent that
despite the probability density of smaller SMFRs increasing below the smallest resolved size, the filling
factor occupied by these extremely small SMFRs is very low. Most of the time is occupied by SMFRs
of size between 105 and 106 km. These do not exhibit any sort of clear solar activity dependence. In
fact there is a weak anticorrelation with solar activity, where the filling factor occupied by SMFRs
around 106 km seems to peak at solar minimum. However, looking closely at the top portion of
Figure 11 (c), events of diameter above ∼0.01 au appear to be significantly more common during
solar maximum and have a strong correlation with solar activity. Considering CMEs tend to be on
the order of 0.1 au, these would still be considered SMFRs. Due to the solar activity dependence
and large size, this subpopulation is much more likely to have a solar origin.

5.3. Do SMFRs Cluster Around the Heliospheric Current Sheet?

Figure 12 shows the filling factor for each solar wind classification (based on Xu & Borovsky (2015)).
In both of the slow solar wind categories, about 43% of the time is filled with SMFRs. The slight
drop in percentage for coronal hole origin plasma might be a result of the higher speed resulting
in less events fitting in the sliding windows compounded with the known fact that SMFRs tend to
be slightly smaller in faster solar wind (Borovsky 2008; Hu et al. 2018). That the filling factor is
independent of solar wind type is very surprising, because Cartwright & Moldwin (2010) found that
SMFRs cluster around the heliospheric current sheet (HCS), and this conclusion was in agreement
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Figure 12. Filling factor for each category within SMFRs (corrected for data gaps).

with the analysis of Hu et al. (2018). If that were the case, we should have seen the highest density
of SMFRs at sector reversal regions. In this subsection, we demonstrate that the apparent tendency
of SMFRs to cluster around the HCS is artificial.
In their Section 7, Hu et al. (2018) analyzed the distribution of the number of days between

the detected SMFRs and the nearest HCS crossing in order to compare to a similar analysis by
Cartwright & Moldwin (2010). It was found that the distribution is peaked at 1 day after the
nearest HCS crossing and that the SMFRs tend to cluster around the HCS boundaries. However, we
point out here that looking solely at the distribution of days between SMFR times and the nearest
HCS crossing is prone to statistical bias. Most of the measurements are close to the HCS, so the
distribution for SMFRs must be compared to the distribution of the measurements. The distribution
of the SMFR distance to the HCS is only meaningful by itself if the distance of the measurements
from the HCS are uniformly distributed.
In order to determine whether SMFRs are more common closer to the HCS crossings, we calculated

the distances to the nearest HCS crossing for the measurements used for detection in addition to
the distances for the detected SMFRs. Like Hu et al. (2018), we use L. Svalgaard’s list of HCS
crossings1. In Figure 13 (a), we compare their HCS distance distribution to the SMFR HCS distance
distribution. From this figure, it appears that the filling factor of SMFRs is constant far from HCS
crossings, reduced shortly before, and elevated shortly after. However, the changes are strongly
correlated with changes in the average B as a function of distance from the HCS crossing as shown
in the figure, suggesting the possibility of further statistical bias.
In Figure 13 (b), we plotted the total duration of the SMFRs that are a given number of days from

the nearest HCS crossing by the total time that Wind is that distance from the nearest HCS crossing
(filling factor). For most of the distances, it is essentially a constant 25% with minimal variation, so
there is not a strong tendency to be close to the HCS crossings. However, there is a slight decrease
to around 20% right before the HCS crossing, followed by an increase to around 35% after the HCS
crossing. As observed by Hu et al. (2018), the SMFRs are more likely to occur approximately one
day after the HCS than during or before the HCS crossings. Figure 13 (b) also confirms the dip in
the proportion of SMFRs right before an HCS crossing. The break point from a uniform distribution

1 https://svalgaard.leif.org/research/sblist.txt
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Figure 13. (a) Histogram of distance from nearest HCS crossing for original catalog’s events and for
uniformly spaced timestamps. The black bars represent the distribution of distance from the HCS to points
evenly spaced in time for the time interval of the original catalog. The blue bars represent the distribution
of the distance from the HCS for the SMFRs in their catalog. The dotted red line demonstrates that the
SMFR distribution peaks at 1 day from the HCS. (c) and (d): Same as (a) and (b) but using the data for
the new list of events. Additionally, (d) is corrected for data gaps but not (b) because the data gaps are less
significant in the original catalog dataset and because it used a different instrument.

is within 6 days, which is close to the typical distance between HCS crossings during quiet times
(considering a 4-sector HCS over the 27 day solar rotation).
Figure 13 (c) is of the same format as Figure 13 (a), but using the new catalog. It is qualitatively

the same, although quantitatively, the deviations of the SMFR distribution from the measurement
distribution are less pronounced. However, the filling factor based on the new catalog (Figure 13 (d))
exhibits a different result from the original catalog: the filling factor is essentially the same for all
distances! The disagreement with the original catalog can be explained by the magnetic field strength
distributions in Figure 14. Before the HCS crossing, the average magnetic field strength is below
5 nT. After the HCS crossing, it is above 5 nT. Due to the fixed threshold of 5 nT, this resulted in
more events being detected after HCS crossings and less before HCS crossings in the original catalog.
If the filling factor of SMFRs does not depend on distance from HCS, why is there a difference in

the number of SMFRs before and after the HCS crossing? The answer lies in Figure 14, which shows
that while the size distribution of SMFRs does not differ much before or after HCS crossings, the
velocity and magnetic field strength distributions are higher after the HCS crossing. This is because
corotating interaction regions (CIRs), interfaces between the fast and slow solar wind, are known to
“catch up” to the HCS very often (Borrini et al. 1981; Crooker et al. 1999; Huang et al. 2016; Potapov
2018; Liou & Wu 2021). Faster solar wind streams have higher magnetic field strength and velocity.
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Figure 14. Comparison SMFR diameter, speed (∥vFR∥), and magnetic field strength B distributions before
and after HCS crossings. The diameter histograms is only shown for the fully resolved range, and the other
histograms are limited to typical ranges. The y axis is the proportion of samples in each bin with the y
limit set to 50%. The y labels are not shown because the focus is the difference in shape of the distribution
between one day before and one day after the nearest HCS crossing. Note in particular that the diameter
histograms are approximately the same whereas the velocity histogram for one day after has a significantly
higher proportion for higher velocities than one day before, and that the magnetic field strength has a
significantly higher proportion above 5 nT a day after than a day before.

A tendency for the number of SMFRs to increase a day after HCS crossings due to the increase in
velocity. For example, if the velocity were two times higher, we would expect double the number of
SMFRs if the same filling factor is the same. The small increase in filling factor in Figure 13 (d)
right before the HCS crossing may be due to the fixed minimum sliding window length: A slightly
higher proportion of the total duration will be filled with events when the velocity is lower, since
more events can fill the sliding windows due to having a longer duration.
In summary, the radial density and filling factor of SMFRs is independent of distance from the

HCS. All of the observations indicating otherwise can be understood as follows: The velocity would
be expected to increase after crossing the HCS and passing the CIR, usually after less than a day
(Liou & Wu 2021). This explains the peak of the distribution a day after the HCS crossing rather
than zero days, as pointed out by Hu et al. (2018) and confirmed in the above analysis. The higher
velocity after the HCS results in more SMFRs being detected without affecting the filling factor.
The reason the events in the original catalog have a difference in filling factor before and after the
HCS, not just the number of events, is because of the ⟨B⟩ > 5 nT threshold: B increases from below
to above the threshold after entering faster solar wind with stronger B. In short, although more
SMFRs are observed when the solar wind moves faster, the filling factor of SMFRs is independent of
distance from the HCS (as well as solar activity). It is constantly approximately 35%. Since the size
distribution varies only slightly by distance from HCS or plasma type, this means that radial density
is independent of distance from the HCS, too.

6. PHYSICAL PROPERTIES
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Figure 15. Joint distribution of ẑ azimuth ϕ (counterclockwise angle from the radial direction away from
the Sun) and polar angle θ (angle from the normal direction in the RTN coordinate system) for various
ranges of diameter. In the 2D histograms, darker values mean higher filling factors. The 2D histograms are
generated with hexagonal binning to clearly show the shape. Furthermore, the vertical binning is by cos(θ)
instead of θ (hence the uneven spacing) because randomly oriented unit vectors naturally tend to values of
θ closer to 90◦ (by a factor of sin(θ)) but have uniformly distributed cos(θ). The sides show the histograms
of ϕ (on top) and θ (on the right).

6.1. Axial Orientation

Figure 15 illustrates the distribution of the axial orientation in the radial-tangential-normal (RTN)
coordinate system converted to spherical coordinates. In terms of the components of ẑ in RTN coor-
dinates, ϕ ≡ arctan2(zT , zR) is the azimuth angle and θ ≡ arccos(zN) is the polar angle. ϕ = 0 means
radially outward from the Sun, and θ = 0 means in the normal direction (which is approximately
northward), while θ = 90◦ means in the RT plane. Parker spiral alignment would have θ = 90◦ and
ϕ ≈ −45◦ when the IMF has positive polarity (away from the Sun) and ϕ ≈ 135◦ when it has negative
polarity (towards the Sun). In Figure 15, this appears to be the case for all of the well-resolved scale
ranges. Deviations from Parker spiral alignment follow a 2D Gaussian distribution, implying that
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Figure 16. (a) Histogram of Walén slope. The black bars include all events, while the blue and red
respectively represent events with extremely strong and not so strong correlation between v− vHT and vA.
A positive (negative) Walén slope indicates a flow (anti)parallel to the magnetic field. (b) Histogram of
correlation between v − vFR and vA. (c) Histogram of velocity difference between ⟨v⟩ and vFR. The plot
indicates a tendency for the velocity fluctuations to be sunward along the Parker spiral in the flux rope
frame of reference.

they are due to random and independent processes (such as errors in determining the orientation or,
alternatively, 3D effects such as the tangling of flux tubes into spaghetti as illustrated in Borovsky
(2008)).
In Figure 15, there are peaks in the smallest two ranges that are shifted about 5◦ clockwise from

the (anti)radial direction. Due to the Earth’s counterclockwise orbit, the solar wind velocity relative
to a spacecraft orbiting along with the Earth has a slight clockwise shift. The sign of the direction
depends on the IMF polarity, not the direction of the velocity. Thus, the peaks are velocity aligned
orientations. Because the temporal scale distribution continues to increase at our smallest sliding
window size of 30s, it is likely that a significant number of SMFRs exist at scales below the lowest
well-resolved scale in our event list (approximately 104 km or so). It takes longer for the spacecraft
through a flux rope of a given size the smaller the angle between its orientation and velocity. Thus,
the many events with diameters below the resolved range would only be detected if their orientation is
sufficiently close to the velocity that their duration reaches 30s. Indeed, the peaks virtually disappear
when events of diameter lower than 104 km are ignored, which is approximately the cutoff (Section 5).
This explains the additional peaks close to the velocity direction.
The results in this section demonstrate that the SMFRs at all scales where the orientation distribu-

tion can be resolved have a clear tendency to follow the Parker spiral direction. This is in agreement
with the results of the original catalog, providing further validation for the extended range of sizes.

6.2. Field-Aligned Flows in SMFRs

The Walén slope distribution, measuring Alfvénicity, is plotted in Figure 16 (a). In Figure 16 (b),
the distribution of the correlation is shown as well. When the correlation is low, the Walén slope
tends to be estimated as 0 since a clear linear relationship cannot be found. For the most part, the
results are consistent with the results we obtained by reanalyzing the original catalog (Figure 3).
Most of the SMFRs have non-negligible field-aligned velocity fluctuations that are comparable to but
less than the Alfvén velocity. Both along and opposite to the magnetic field direction, the absolute
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Figure 17. (a) Histogram of correlation between proton number density and magnetic field strength. (b)
Histogram of the maximum B minus minimum B in the closed part of the reconstructed cross section.
Demonstrates that unlike pure Alfvén waves, SMFRs have anticorrelated np and B as well as a nonzero,
measurable change in B.

value appears to be normally distributed. An additional population centered around 0 is present
but can be explained as a consequence of measurement uncertainties resulting in low correlation for
events with weak field-aligned flows resulting in a Walén slope tending to zero. However, unlike the
center in Figure 3, the center of the normal distributions in Figure 16 (a) appears to be lower than
0.7. This is most likely because the lack of the 5 nT threshold enables more flux ropes to be detected
that are not in coronal hole origin solar wind streams, hence less Alfvénic and lower B. This also
explains the difference between our result and the result of Borovsky (2020a), since their statistics
are based only on Alfvénic events.
If the velocity fluctuations in our detected events do not average to zero, does that mean that

they are actually waves, not propagating structures? Waves can be broadly defined as structures
that propagate relative to the so-called background bulk fluid velocity, whatever that is. There is
a difference between the flux rope velocity and the average bulk fluid velocity within the flux rope.
Figure 16 (c) demonstrates that the majority of SMFRs move faster than the average of the velocity
within the SMFRs by a finite but sub-Alfvénic amount, usually less than half the Alfvén speed. Thus
from the perspective of the particles within a flux rope structure, most flux ropes propagate away
from the Sun along the Parker spiral. In the flux rope frame of reference, the plasma tends to flow
sunwards along the Parker spiral.
The velocity fluctuations, being field aligned, will have a mean fluctuation that is aligned with the

flux rope axis. Since the velocity fluctuations have a preferred direction, the rest from of the solar
wind plasma is not necessarily the average velocity ⟨v⟩. Previous studies suggest that the solar wind
frame of reference is in fact vHT, the velocity of the advected structures (e.g. Němeček et al. (2020)).
The variations in both magnetic field and plasma velocity, as well as variations in properties related
to the magnetic structure like density, specific entropy, plasma beta, helium abundance, and electron
heat flux are all advected with velocity vHT (Borovsky 2020a). This suggests that the rest frame is
in fact vHT (≡ vFR), not ⟨v⟩. With this information in mind, it is more likely that we are dealing
with advected structures, not waves.
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Figure 18. Comparison of absolute value of Walén slope with the distribution derived from PSP’s first six
encounters by Chen & Hu (2022). Only the absolute value is shown because most of those PSP encounters
were during periods of antiradial magnetic field, so the Walén slope from the PSP observations was preferen-
tially positive. For the Wind data, only samples with at least 0.8 correlation are included in the histogram,
so that the criteria is the same as the one used by Chen & Hu (2022). Additionally, since we require that
the Walén slope is less than 0.9, we do not include bins above 0.9. This figure shows that the peak of the
distribution is the same. The differences in the other parts of the distribution may be due to the differences
in plasma types observed by the two spacecraft.

Advected structures are often distinguished from waves by anticorrelated proton density np and
magnetic field strength B, which is not a signature exhibited by Alfvén waves. Burlaga & Turner
(1976) (cited by Cartwright & Moldwin (2010) to justify the exclusion of Alfvénic fluctuations from
SMFR detection) pointed out ‘Alfvén waves’ from spacecraft observations have nonzero, measurable
fluctuation in B, which cannot be incompressible Alfvén waves but can be compressible Alfvén waves.
(Burlaga & Ogilvie 1970) found weakly anticorrelation between total thermal pressure and magnetic
pressure on a timescale of ∼1 hour, evidence for the existence of pressure-balanced nonpropagating
structures. Denskat & Burlaga (1977) found evidence that some Alfvénic fluctuations may contain
tangential discontinuities and other types of static structures, suggesting they are probably not pure
Alfvén waves. Anticorrelation between np and B have been used by previous studies as evidence of the
existence of pressure balanced structures to the exclusion of Alfvén waves (e.g. Vellante & Lazarus
(1987); Matthaeus et al. (1990)). Figure 17 (a) shows a strong tendency for negative correlation
between np and B. This suggests that the detected SMFRs correspond to the long-observed pressure
balanced structures, not Alfvén waves. A property expected for incompressible Alfvén waves is a
constant magnetic field strength B, but Figure 17 (b) demonstrates that for the detected events,
the range of magnetic field strength values is usually significantly higher than the measurement
uncertainty (which is less than 0.1 nT; not shown here, the histogram of the logarithm shows that
the range of magnetic field strength is log normally distributed). Since |Rw| is usually significantly
less than 1, even pure compressible Alfvén waves cannot satisfactorily explain the data. Considering
also that the Alfvénic events have most of the same statistical properties as the non-Alfvénic events,
it is difficult to consider the Alfvénic events to be pure Alfvén waves and not flux ropes.
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Figure 19. Scatter plots of Ψ, Φ, τ as functions of diameter. The shaded region, with cutoff at 600 km s−1×
30 s, indicates where the smallest sliding windows cannot detect SMFRs of that size for orientations too far
from radial, so the reconstructions and derived parameters are less reliable in this range.

Considering that the previous understanding is that SMFRs near the Sun are more Alfvénic than
SMFRs away from the Sun, it is pertinent to compare our results to recent findings from PSP.
Figure 18 compares our derived Walén slope distribution to the one derived by (Chen & Hu 2022)
from PSP’s first 6 encounters. The most outstanding feature of this figure is that the peak is the
essentially same at 1 au and at PSP. However, there are some significant differences away from the
peak. It is unclear whether this difference is due to the radial difference or the difference in plasma
types observed by the two spacecraft. If PSP happened to observe more Alfvénic solar wind than non-
Alfvénic solar wind, for example, then such a difference between PSP and 1 au observations should
occur even without any radial evolution of the Alfvénicity. Since the peak of the distribution is the
same, it seems that there is minimal variation of the Walén slope between the inner heliosphere and
1 au, if any. Although it is well-known that the “Alfvénicity” in the sense of cross helicity decreases
away from the Sun, this does not necessarily mean that the “Alfvénicity” in terms of Walén slope
has any radial dependence: the Alfvén speed decreases away from the Sun, which reduces the energy
of Alfvénic fluctuations. Since cross helicity is related to the energy of the Alfvénic fluctuations, this
would reduce the cross helicity while leaving the Walén slope the same.

6.3. Magnetic Flux, Twist, and Current Density

Using the reconstructed cross sections from the output of our improved detection algorithm, we
have access to more quantitative information on the detected SMFRs than previous studies. Because
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Table 2. Median value of properties in different solar wind plasma types
calculated using only events in the well-resolved range of diameters.

Quantity Coronal Hole Streamer Belt Sector Reversal Ejecta

Φ/A 5.07 nT 4.84 nT 3.88 nT 9.66 nT

2Ψ/d 0.78 nT 0.70 nT 0.58 nT 0.94 nT

|Rw| 0.60 0.46 0.29 0.47

∥vFR∥ 608 km/s 434 km/s 348 km/s 446 km/s

∥⟨vsw⟩∥ 590 km/s 426 km/s 346 km/s 429 km/s

⟨np⟩ 2.8 per cc 4.6 per cc 7.40 per cc 5.2 per cc

⟨Tp⟩ 20.0 eV 9.0 eV 3.8 eV 8.9 eV

magnetic flux is conserved under ideal MHD, it is useful to view the axial and poloidal flux in
particular. We estimated the axial flux Φ by integrating

∫
Bzdxdy over the closed region of the

recovered cross section (Appendix B) and the poloidal flux per unit length Ψ as the difference
between the maximum and minimum values of A in the closed region. Using these two, we estimated
the average twist (number of turns turns per unit length) as τ = Ψ/Φ (which is the equation for the
twist of a cylindrical flux rope having uniform twist). Additionally, we calculated the 2.5D helicity
(per unit length) as H =

∫
(A − A0)Bzdxdy where A0 is the the value of A at the outermost field

closed transverse field line and the integration is over the closed region of the flux rope (Hu et al.
1997).
Figure 19 shows how these parameters vary as a function of flux rope diameter. We only consider

the range of diameters that are fully resolved in terms of axial orientation and thus have more
reliable reconstructions. From here, it appears that the axial flux is directly proportional to the area,
suggesting that the axial field strength is independent of the flux rope scale. However, although the
poloidal flux is related to the diameter, it is not directly proportional. Instead, it is related with a
power law index of 1.2. These relationships mean that the axial magnetic field strength is largely
independent of the flux rope size, whereas larger flux ropes have stronger poloidal magnetic field
strength on average. The power law indices appear to remain the same regardless of solar activity
level or the yearly average IMF strength (not shown), although both the poloidal and axial flux
distributions appear to shift proportionately to changes in average IMF strength.
We also calculated the peak axial current density jz from the polynomial fit to P ′

t(A). Figure 19
shows that the peak axial current density shares the same power law as the twist and that the total
current shares the same power law as the poloidal flux. The current density decreases with size,
whereas the total current increases with size.

6.4. Plasma Type Dependence

Table 2 shows how certain SMFR properties depend on the plasma type. The axial and poloidal
fluxes for a given size tend to be higher in faster plasma types such as coronal hole origin plasma
and ejecta, but lower in slower plasma types such as streamer belt origin plasma and sector reversal
regions. Conversely, this implies that larger flux ropes are more common in slower solar wind streams,
consistent with previous results (Borovsky 2008; Hu et al. 2018). The Alfvénicity of SMFRs is
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significantly higher in coronal hole origin plasma. Flux rope speed and plasma speed are both higher
in faster solar wind types, but the average plasma speed is slightly lower in all types (even ones with
low Alfvénicity) due to the sunward velocity fluctuations in the flux rope frame. This is consistent
with the general understanding that the fast solar wind is more Alfvénic whereas the slow solar
wind is less Alfvénic. Since the distribution is only slightly different for each non-ejecta solar wind
plasma type, it is natural to assume that it is the same phenomenon that is observed in all three.
It is unclear whether the difference with SMFRs in ejecta plasma is due to them being a different
structure altogether or due to a difference in the plasma conditions in ejecta plasma. For example,
if they all form locally through turbulence, the plasma conditions should have a significant effect on
the properties of the SMFRs.
Another observation is that in Table 2, the SMFRs are less dense and hotter in faster solar wind

types while being more dense and cooler in slower wind types. If one estimates a characteristic
pressure by multiplying average temperature by average density, the pressure coronal hole origin
plasma is higher than the streamer belt plasma by a factor of 1.36 and which, in turn, has a pressure
higher than that of sector reversal plasma by a factor of 1.48. These properties are consistent with
the well-known properties of the fast and slow solar wind. Since the faster solar wind types have
higher pressure, compression is a possible reason for the slight decrease in size for a given magnetic
flux in faster types compared to slower types.

7. DISCUSSION AND CONCLUSIONS

In summary, we have developed an improved version of the GS-based automated detection algo-
rithm, demonstrated its improved speed and reliability qualitatively and quantitatively with simu-
lated data, and applied it to 27 years of Wind data. The improved performance enabled extending
the detection to a larger range of sizes with significantly less computational resources. The improved
reliability justified the removal of the B > 5 nT threshold, motivated by previous findings that prop-
erties of SMFRs such as B correspond to the surrounding solar wind. This revealed the statistical
bias underlying previous conclusions regarding solar activity and distance to HCS dependence. We
summarize the findings as follows.

1. SMFR diameter is log-normally distributed. The parameters of the log-normal distribution
depend on solar wind type. Among non-ejecta solar wind types, the distribution extends to
larger values in slower types, consistent with previous findings (Borovsky 2008; Hu et al. 2018).
We have shown that this may be a consequence of compression (Table 2), although it could
alternatively be related to proximity to the HCS. In ejecta plasma, the distribution is also
log-normal but despite the relatively fast speed, its size range extends further than other types.

2. The apparent solar activity dependence of the SMFR count was eliminated by removing the B
threshold or by using the yearly average as a flexible threshold instead. The remaining variation
of SMFR count per year is consistent with proportionality to the average yearly velocity. This
proportionality was also verified to hold at a timescale of a synodic solar rotation. The slope
of the proportionality yielded an estimated radial density of ∼1 SMFR per 106 km.

3. The filling factor, or percentage of measurements within SMFRs, is independent of solar activity
without a fixed B threshold (having a constant value of approximately 35%). With the fixed
5 nT threshold, there is a strong correlation between the yearly average solar wind B and the
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filling factor of the SMFRs with B above the threshold. With the yearly average B as a flexible
threshold, the filling factor is again independent of solar activity.

4. The majority of the filling factor is contributed by SMFRs of diameters between 105 and 106

km. These do not exhibit a solar activity dependence. The contribution to the filling factor by
the largest SMFRs, above approximately 0.01 au in diameter, do exhibit a strong solar activity
dependence, suggesting that they are transient events.

5. The filling factor and radial density of SMFRs are independent of solar wind type and distance
to the HCS. This is evidenced by the consistency of the linear relationship between velocity
and SMFR count despite the well-known fact that the HCS is nearly vertical during solar
maximum, affecting the proximity to the HCS throughout a solar rotation. Moreover, the rate
at which each solar wind type observed changes changes throughout the solar cycle, so a major
solar activity dependence should have been observed if SMFRs were more common in a certain
solar wind type. It is also supported by the virtual independence of the filling factor on the
categorization of the solar wind type by the Xu & Borovsky (2015) method (Figure 12).

6. The previous finding of HCS distance dependence reported by Cartwright & Moldwin (2010)
and Hu et al. (2018) was demonstrated to be a consequence of statistical bias. The reason for
the peak of the distribution of distance to the nearest HCS crossing in both studies is that
the same peak is found in the distribution of the measurements’ distance to the nearest HCS
crossing. We found that the reason that Hu et al. (2018) found the peak was 1 day after the
HCS crossing is because of the known fact that CIRs catch up to the HCS, resulting in faster
solar wind about a day after HCS crossings with B > 5 nT, resulting in both a higher event
count (for both the new and old catalogs) and a higher filling factor (for the old catalog only,
due to the 5 nT threshold).

7. The orientation of SMFRs at all scales where the orientation can be resolved, including the
largest scales, is consistent with Parker spiral alignment (Figure 15). This is consistent with
previous studies (Borovsky 2008; Hu et al. 2018) but is demonstrated in this study across a
wider range of scales.

8. Most SMFRs at 1 au have significant Alfvénicity (field-aligned flows) as determined by the
Walén slope. Although Gosling et al. (2010) found that early SMFR lists did not contain many
Alfvénic events, Alfvénic events were generally excluded by previous studies. The reason that
previous applications of GS detection did not report a significant number of Alfvénic SMFRs
was that the use of the average velocity as the reference frame led to a Walén slope biased to
0. Applications to PSP (Chen et al. 2020, 2021; Chen & Hu 2022) used the HT frame, which
led to the correct Walén slope. Corrected calculation applied to the original catalog’s events
reveals that most of the events in the original catalog have high Alfvénicity, which we also
validated using a reference frame-independent method (Chao et al. 2014).

9. Despite the high Alfvénicity, Alfvénic SMFRs exhibit signatures inconsistent with pure Alfvén
waves. These include the nonzero change in B (incompatible with small-amplitude Alfvén
waves) and the anticorrelation between magnetic field strength and density (whereas Alfvén
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waves should have a positive correlation (Vellante & Lazarus 1987)). Additionally, the statisti-
cal properties of Alfvénic SMFRs are consistent with those of non-Alfvénic SMFRs, suggesting
that they are the same phenomenon.

10. Comparison of the Alfvénicity distribution at 1 au (our event list) and PSP (Chen & Hu
2022) results in little difference between the two distributions (Figure 18). The peak of the
distribution is the same. The PSP results have slightly less low-Alfvénicity events and slightly
more high-Alfvénicity events. It is unclear if these disagreements are due to differences in
methodology, radial evolution, or PSP spending more time in Alfvénic soolar wind.

11. Using the additional information provided by the new detection method, we found that poloidal
flux Ψ, axial flux Φ, twist τ , current density jz, and helicity H follow power laws with respect
to diameter. The axial flux power law of Φ ∝ d2.0 implies that the average axial field strength
⟨Bz⟩ ∝ Φ/d2 is independent of size. The poloidal flux power law Ψ ∝ d1.2 implies that the
average poloidal field strength ⟨Bϕ⟩ ∝ Ψ/(2d) is not independent of size, but increases slightly
with size as ⟨Bϕ⟩ ∝ d0.2. As a consequence, larger SMFRs have slightly higher total field
strength. The helicity power law H ∝ d3.2 suggests that if the larger SMFRs form by merging
of smaller SMFRs, either helicity or total area is not conserved (if both were conserved, we
would have H ∝ d2.0). Presumably, area is less likely to be conserved. These power laws can
be compared to large-scale MHD simulations in future studies.

12. By comparing the average properties of SMFRs in different solar wind types, we confirmed that
the SMFR properties closely follow the properties of the surrounding solar wind. For example,
magnetic field strength and temperature are highest in coronal hole-origin plasma, whereas
density is highest in sector reversal region plasma. Similarly, Alfvénicity is higher in coronal
hole-origin plasma.

SMFRs were originally seen as transient structures, but results from this and other recent studies
(Section 1) suggest that the solar wind is a sea of SMFRs. The primary candidates for the origin of
SMFRs according to the earliest studies were relatively small CMEs (Feng et al. 2008) or reconnection
across the HCS (Moldwin et al. 1995, 2000; Cartwright & Moldwin 2010). However, for most SMFRs,
the lack of solar activity dependence of the radial density makes it unlikely that they are related to
small CMEs. The complete independence of distance from the HCS suggests that it is unlikely that
reconnection across the HCS is a major source of SMFRs, either. Of course, it is likely that both of
these mechanisms contribute sub-populations, since some solar eruptions have been directly linked
to SMFRs at 1 au (Rouillard et al. 2011). These SMFRs would be transients as opposed to filling
the solar wind. However, if one is to study them, it is not sufficient to simply look for long events
or events with elevated B, as most of those may just be particularly large fluctuations, the tails
of the log-normal distributions of the main population SMFRs’ size and magnetic field strength.
Additional factors such as having significantly different physical properties from surrounding solar
wind should be considered. In fact, since SMFRs above ∼0.01 au do appear to have a strong solar
cycle dependence (Figure 11 (c)), this may be possible to use as a threshold to identify transient
SMFRs. However, unlike ICMEs, these large SMFRs are aligned with the Parker spiral, just like
smaller SMFRs (Figure 15).
Within the sea of flux ropes model, the origin and dynamics of the flux ropes remain contested.

Borovsky (2008) suggests that solar wind flux tubes typically do not interact through reconnection
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due to the expansion of the solar wind. However, others believe that reconnection processes result in
constant destruction, creation, and merging. Greco et al. (2009) and many others have demonstrated
how MHD turbulence can generate flux ropes with waiting times similar to those observed in situ
between current sheets. This is often cited as evidence of local generation of the current sheets via
turbulence, but it can result from repeated reconnections causing random multiplications of structure
sizes (Matthaeus & Goldstein 1986), and this process can alternatively happen at the Sun. The non-
Gaussian current density distribution observed by Greco et al. (2009) was found to be similar to the
in-situ SMFRs by Zheng & Hu (2018), which may be evidence of local generation via turbulence, but
it is in fact not independent evidence from the log-normal distribution of size, since current density is
related to size by a power law. As of now, it is unclear whether the structures are generated locally or
originate as structures from the Sun (in which case, it is unclear to what extent they evolve through
reconnection processes between the Sun and 1 au).
We have shown that using the correct calculation of the Walén slope, the Alfvénicity of SMFRs

tends to be high even at 1 au. The similarity of the Walén slope distribution between the PSP results
and the 1 au results (Figure 18) is interesting and requires further research. However, they usually
contain what appear to be embedded Alfvén waves. Relative to its average plasma velocity, when
field aligned flows are present, the flux rope structure tends to propagate outward (antisunward)
along the Parker spiral at slightly less than the Alfvén speed; equivalently, in the flux rope frame of
reference, there is a sub-Alfvénic sunward plasma flow. The result of antisunward propagation was
found based on HT analysis in previous studies of SMFRs observed by PSP (Chen & Hu 2022) and of
general Alfvénic magnetic structure in the solar wind (Borovsky 2020a). Paschmann et al. (2013) also
found that directional discontinuities, both rotational and tangential, propagate antisunward based
on electron strahl measurements combined with HT analysis. Considering the abundance of SMFRs,
it is likely that most directional discontinuities are related to SMFRs. Similarly, while fluctuations
in the solar wind are commonly attributed to outward-propagating Alfvén waves (Belcher & Davis
1971), SMFRs appear to be uniformly present in all solar wind types, Alfvénic or not. Thus, a
significant portion of, if not the majority of, the Alfvén waves at 1 au appear to be embedded within
SMFRs.
What causes the embedded Alfvénic flows in SMFRs? Borovsky (2020b) mentioned that perturba-

tions perpendicular to a flux tube’s axis propagate along the axis relative to the plasma at a speed
related to the Alfvén speed (see references therein). Such a propagating disturbance is essentially a
torsional Alfvén wave. Within the model of fossil structures connected to the Sun, they suggested
that the perturbations could be due to the shuffling of flux tubes at the Sun. This is a plausible
explanation for the common field-aligned flows that are more or less the same at 1 au and PSP. How-
ever, field-aligned flows can also occur through local processes (see, for example, the field-aligned
flows in the benchmark MHD simulation in Figure 7). Whether the perturbations originate from the
Sun or throughout the solar wind, one would still expect them to mostly propagate away from the
Sun because of the super-Alfvénic speed of the solar wind.
The structure of SMFRs requires the magnetic field to rotate about a central axis. These deflec-

tions could be associated with switchbacks (SBs), the study of which has become quite popular due
to their prominence in PSP observations (Bale et al. 2019; Kasper et al. 2019). As for SMFRs, nu-
merous mechanisms have been proposed to explain the generation of SBs (e.g., Squire et al. (2020);
Ruffolo et al. (2020); Drake et al. (2021); Huang et al. (2023)). Some mechanisms propose a solar
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origin, while others propose a local origin. Due to the numerous plausible origin mechanisms, it is
likely that a number of mechanisms have varied levels of contributions at different distances from
the Sun. Observationally, Pecora et al. (2022) showed that the occurrence of SBs per unit length
decreases sharply within 0.2 au of the Sun, whereas it increases gradually beyond 0.2 au, implying
that local dynamics play an important role. Drake et al. (2021) discussed how flux ropes can appear
as switchbacks in PSP observations. By including SMFRs with high Alfvénicity, Chen et al. (2021);
Chen & Hu (2022) demonstrated that many SBs observed by PSP are related to SMFRs. We have
found that SMFRs at 1 au have essentially the same Alfvénicity as SMFRs observed by PSP, which
means that they can also appear as SBs even if Alfvénicity is required.
Interestingly, as we have found to be the case with SMFRs, SB occurrence is correlated with bulk

velocity (Mozer et al. 2021; Jagarlamudi et al. 2023). We have shown that the occurrence of SMFRs is
correlated with the average bulk velocity as a consequence of a constant radial density. If we find that
SBs, too, have constant radial density, that would be additional observational evidence that they are
rotations of the magnetic field caused by structures such as SMFRs. However, evaluating precisely
whether the radial density of SBs is constant will be challenging because the types of solar wind and
levels of solar activity observed by PSP are limited, and there can be noticable fluctuations in SMFR
counts even on the timescale of a solar rotation (Figure 11). Nevertheless, this is an interesting work
to be carried out in the future.
Future studies of SMFRs should take into consideration some of the points we have raised regarding

the detection of SMFRs and the statistical interpretation of the results:

1. Variation in the number of events must be interpreted with caution. A fixed threshold on
⟨B⟩ can cause significant statistical bias because not all SMFRs are transients. In MHD
simulations and observations, the SMFR B rarely differs significantly from the surrounding
plasma. Removing the threshold only increases the number of events by approximately a
factor of two, but it completely changes the conclusions regarding solar activity dependence.
The distribution of distance to large-scale structures such as the HCS needs to be compared
with the overall measurements’ distribution. It may be that events appear to be close to or far
from a given large-scale structure, but in fact they share the same distribution of distance to
the structure as arbitrarily chosen points in time.

2. Alfvénicity, or correlation between changes in velocity and magnetic field, can be measured
through the slope of the Walén relation δv ≡ v − vHT ∝ vA. It must be evaluated in the
HT frame (Khrabrov & Sonnerup 1998), which differs from ⟨v⟩ when ⟨δv⟩ ̸= 0. Averaging
over a single flux rope will result in a scatter plot where all of the components are centered
on the origin, resulting almost invariably in a Walén slope of zero. Averaging over a longer
interval may be less problematic, but because the Alfvénic disturbances have a preferential
direction (antisunward), it may still give inaccurate results. Alternatively, the Walén slope
may be evaluated using a frame-independent method (Chao et al. 2014), which produces the
same statistical results as the HT frame (Figure 3).

3. A strong field-aligned Alfvénic flow does not necessarily mean an event candidate is a pure
Alfvén wave. From a theoretical point of view, Alfvénic flows are expected to be observed
in flux ropes, since there are many processes that can cause them (see Gosling et al. (2010)
and references therein). Other factors must be considered to distinguish pure Alfvén waves
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from SMFRs, such as a nonzero change in magnetic field strength or anticorrelation between
magnetic field strength and density.

A major but necessary limitation of this study is that the events are detected based on a single
spacecraft. A single spacecraft cannot measure the gradient of the magnetic field, so the 2D as-
sumption that the GS method is based on cannot be directly validated. Even if the 2D assumption
is correct and there are flux ropes present, if the wrong boundaries are selected, the reconstructed
cross section will be totally inaccurate, as demonstrated in Section 3. Nevertheless, the usage of
single-spacecraft data was necessary for the long period of time that it afforded, and our benchmark-
ing against an MHD simulation suggests that most of the detected events are flux ropes even if the
reconstruction is inaccurate, especially those with more than 30 data points (Table 1). While only
single spacecraft measurements are available to use for such a large-scale statistical study as this one,
missions such as MMS can be used to determine the reliability from single spacecraft detection. In a
forthcoming study, we will use a novel GS-inspired technique to detect and reconstruct SMFRs from
MMS data to validate the findings in this and other single spacecraft studies.
The source code for the new detection algorithm is available at https://github.com/hafarooki/

PyMFR. For an easy-to-read CSV file containing basic information about each event, as well as plots
for each event, see https://doi.org/10.6084/m9.figshare.24547810. For the version of the code used
in this paper, together with the code for downloading and processing data, running the detection
algorithm, and generating figures, along with the data used, see https://doi.org/10.6084/m9.figshare.
24547798. There is much more insight to be gained from the new database in future studies. For
example, why is the Walén slope similar for flux ropes near the Sun and at 1 au, having the same
peak in the distribution? Can the power law for poloidal and axial magnetic flux help to determine
the origin of the SMFRs? Are all of the observed statistical properties of SMFRs compatible with
results from MHD simulations? What other information can be derived from this study’s novel
database containing on the order of 105 flux rope cross sections derived from GS reconstruction?
These questions should be investigated by forthcoming studies.
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A. THEORETICAL BACKGROUND

A.1. The Grad-Shafranov (GS) Technique

For any 2.5D magnetic field (∂/∂z = 0 but Bz(x, y) ̸= 0), we can write the magnetic field in
terms of a magnetic vector potential A as B = ∇ × A = ∂A

∂y
x̂ − ∂A

∂x
ŷ + Bz(x, y)ẑ where A ≡

A · ẑ. The significance of A can be seen by taking its gradient along the magnetic field direction:
∇A ·B = ∂A

∂x
∂A
∂y

− ∂A
∂y

∂A
∂x

= 0. This implies that A is a field line invariant (constant along transverse
field lines). Thus the contours of A in the plane perpendicular to ẑ (isosurfaces of A when viewed
in 3D) are transverse (in-plane) magnetic field lines. Using Ampere’s law, µ0jz = ẑ · ∇ × B =
∂By/∂x − ∂Bx/∂y = − ∂2A/∂x2 − ∂2A/∂y2 = −∇2A, so the source of A is the axial current
density:

∇2A = −µ0jz (A1)

Evaluating the flux rope velocity vFR requires finding the frame of reference in which the magnetic
structure does not change, i.e. ∂B/∂t = −∇× E′ = 0, where E′ = E+ vFR ×B. A sufficient (but
not necessary) condition for this is simply that E = −vFR ×B and E′ = 0. Such a reference frame
is called a deHoffman-Teller or HT frame, denoted vHT (De Hoffmann & Teller 1950). An optimal
HT frame can be found efficiently using a linear algebra technique (Khrabrov & Sonnerup 1998).
Typically, vHT is found assuming that the solar wind electric field is E = −v×B, since we operate
at MHD scales and direct measurements of the electric field are not always available. Furthermore,
the proton velocity is usually used to calculate E, although if quality electron velocity measurements
are available, they could provide more reliable results (Khrabrov & Sonnerup 1998; Puhl-Quinn &
Scudder 2000). A valid HT frame is usually present in the solar wind, so vFR ≡ vHT. The power of
the HT frame is that it provides a strong validation of the structure being time-static, since E′ = 0
is a sufficient condition for ∂B/∂t = 0.
If we find a valid vHT, we know that the structure is approximately static over time. If v(t) =

vHT, we can assume magnetostatic equilibrium (j × B = ∇p). It follows that jxBy − jyBx =
∂p/∂z = 0, so jx/jy = Bx/By. This is equivalent to saying that Bz is a field line invariant for
magnetostatic structures, because we also have that µ0jx = ∂Bz/∂y and µ0jy = − ∂Bz/∂x , so
B · ∇Bz = −µ0(Bxjy − Byjx). Moreover, p is a field line invariant, since B · ∇p = B · (j×B) = 0.
Assuming each transverse field line has a unique value of A, Bz = Bz(A) and p = p(A). It can be
shown that jz = d/dA [p+B2

z/2µ0]. The quantity p + B2
z/2µ0 is commonly called the transverse

pressure, denoted Pt. If ẑ is known, Pt(A) can be fitted from spacecraft measurements with an
appropriate function, and the derivative can be used as jz and the source term for A. The structure
in the magnetically connected region above and below the spacecraft path can be recovered by solving
the GS equation as an initial value problem, a process known as GS reconstruction (Sonnerup et al.
2006).
The original GS equation and reconstruction assume a magnetostatic structure with no flow in the

vFR frame. However, the HT frame is still present, and a plasma structure can still be in a stationary
state if there are finite, field-aligned flows. Sonnerup et al. (2006) derived a GS-like equation and a
reconstruction process for such a scenario, where the remaining flow can be written in terms of the
Alfvén speed as ∆v ≡ v−vFR = MA(x, y)vA, where MA ≡ ∆v/vA is the Alfvén Mach number in the
frame vFR (not the spacecraft frame). In the general case, Bz and MA are not field line invariants,
but (1 − M2

A)Bz is. For the special case where MA ≡ MA(A) is a field line invariant, Teh (2018)
introduced a further simplified equation in terms of A′ ≡ (1−M2

A)A rather than A. It is especially
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simplified if MA = constant, in which case (1−M2
A) can be factored out, and the equation becomes:

∇2A = −µ0
d

dA

[
B2

z

2µ0

+
1

1−M2
A

p+
M2

A

1−M2
A

B2

2µ0

]
= −µ0jz ⇐= Eq A1 (A2)

so that the approach is essentially the same as the original GS method except jz = d(B2
z/2µ0 + p)/dA

must be replaced with jz = d(B2
z/2µ0 + p/(1−M2

A) +
M2

A

1−M2
A
B2/2µ0)

/
dA . This special case has

become very important in SMFR studies because recent studies found that closer to the Sun, there
are few static SMFRs but still many with field-aligned flows. Observationally, SMFRs with field-
aligned flows appear to have a constant MA that can be estimated as the Walén slope Rw (the slope
of a linear fit through the origin v − vHT = RwvA; it is sometimes estimated using a general linear
fit, but we use the linear fit through the origin) (Chen et al. 2021; Chen & Hu 2022). As we showed,
SMFRs with field-aligned flows are dominant at 1 au, not just near the Sun.

A.2. Application to Spacecraft Measurements of Flux Ropes

The GS technique (summarized above) requires a coordinate system where ∂/∂z = 0. It is common
to define a coordinate system (Figure 20) such that ẑ is the cylindrical axis, the spacecraft moves in
the x̂ direction through the cross section (so that vFR · x̂ < 0 since vFR is in the spacecraft’s frame
of reference), and ŷ is the perpendicular direction in the cross section defined so x = x(t) but y = y0
(the spacecraft does not move in the y direction). To construct the coordinate system, it is sufficient
to find ẑ and vFR. From there, x̂ = −normalize(vFR − ẑ(vFR · ẑ)) and the right-hand rule specifies
ŷ = ẑ× x̂.
Finding ẑ is essential but challenging. Using measurements from only a single spacecraft, the

gradients of the magnetic field components are not specified, so ∂/∂z cannot be directly verified
by any sufficient condition. For flux ropes observed by a single spacecraft, Hu & Sonnerup (2002)
introduced a method to determine z. In a (reasonably simple) flux rope structure, each transverse
field line has a unique value of A (and other field line invariants, such as Pt). Each field line (thus each
value of A) is observed twice as a spacecraft passes through the flux rope, so Pt = Pt(A). If a given z
is the correct orientation, then the derived A versus the derived Pt should show minimal scatter since
Pt should be a single-valued function of A. Thus z is selected to minimize scatter between Pt and
A, quantified as the difference residue Rdiff described in Hu & Sonnerup (2002). Rdiff is essentially
the root mean square difference between each value of Pt and the corresponding value interpolated
to match the same value of A from the other side of the measurement interval, normalized by the
range of Pt to avoid selecting an orientation where Pt = constant, which would imply zero current
density. (Note that Hu & Sonnerup (2002) actually used evenly spaced A values to get interpolated
Pt values from either side for calculating Rdiff whereas Hu et al. (2018) compared each measured
value to the corresponding value from the other side. The advantage of the latter approach is that
it gives less bias to measurements that happen to have a large spacing in A, which is common at the
flux rope boundary. We use the latter approach. Also, Hu et al. (2018) added a factor of 1/

√
2, but

we did not use it.) This approach usually leads to a well-determined flux rope orientation, although
there is much uncertainty in distinguishing x̂ from ẑ, especially if Bx is symmetric (Hu & Sonnerup
2002). Besides Rdiff , the validity of the polynomial fit to Pt(A) required for GS reconstruction is
validated using a similar quantity Rfit (introduced by Hu (2004)) which is equivalent to the root
mean squared difference between the measured Pt(t) and the fitted Pt(A) normalized by the range
(max(Pt)−min(Pt)).
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x̂

ŷ

ẑ

vFR

Figure 20. Flux rope coordinate system. ẑ is the cylindrical direction along which ∂/∂z = 0. The
perpendicular plane is divided into x̂ and ŷ, defined so that the spacecraft only moves through the cross
section along x̂ minus the motion along ẑ. Therefore, the velocity of the flux rope in the spacecraft frame
(vFR; assumed constant) is contained in the xz plane. Since the spacecraft moves along x̂ within the cross
section, the x component of vFR must be negative, since vFR is measured in the spacecraft frame of reference.

In principle, evaluating A(t) would require integrating dA = (∂A/∂t)dt+(∂A/∂x)dx+(∂A/∂y )dy.
However, the analysis is limited to time-static structures, so ∂A/∂t = 0. As the coordinate system
is defined so that vFR is contained in the x-z plane, dx = −vx,FRdt (it is assumed that the spacecraft
is sitting still as the flux rope passes through) and dy = 0. Therefore, once the coordinate system in
terms of the measurement coordinate system is known, A along the spacecraft path is given by:

A(x, y0) =

∫ x

x0

−Bydx = −|vx,FR|
∫ t

t0

Bydt (A3)

A.3. Automated Detection of Flux Ropes from Spacecraft Measurements

The main signature of a flux rope is the bipolar By which crosses the origin once (corresponding to
the field lines pointing up on one side of the cross section and down on the other) and Bz increasing
towards the center (under force-free conditions, this is necessary considering its relation to the current
density). However, this signature is not visible in every coordinate system. It is often the case that in
the spacecraft measurement coordinate system there is no bipolar component of the magnetic field.
As a result, a simple visual inspection of timeseries measurements will miss most of the flux ropes.
Hu et al. (2018) developed an automated detection algorithm and applied it to build a catalog of

SMFRs from 21 years (1996-2016) of Wind data. Their algorithm applies a sliding window to the
spacecraft measurements and tests the hypothesis that a given interval is a flux rope. Thus, their
algorithm is an exhaustive search algorithm. After finding the windows that are acceptable flux rope
candidates, the overlapping candidates are cleaned, and the gaps between the detected events are
filled with events detected using smaller sliding windows. They used sliding windows that ranged
from about 6 hours to 10 minutes. For each interval, the algorithm searches the entire 4π space with
coarsely separated axial orientations (20◦ azimuthal, 10◦ latitudinal) for the ẑ that minimizes Rdiff .
The algorithm determines vFR and uses the test ẑ to set up the flux rope coordinate system. Using
the ŷ given by the test ẑ and vFR, A is calculated using Equation A3.
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The original detection algorithm considers every possible interval with the ẑ that minimizes Rdiff .
To be considered a flux rope, a given interval with its optimal ẑ must have (1) a derived A(x, y0)
with a single stationary point (a necessary condition for each transverse field line being crossed twice)
that can be trimmed to the boundaries (Af = A0) without shortening the interval to the next sliding
window length (with 5-minute spacing); (2) Rfit < 0.14 and Rdiff/

√
2 < 0.12 (with Rdiff being scaled

down by a factor of 1/
√
2 to make it comparable to Rfit); (3) no strong plasma flow in the vFR frame

(Rw < 0.3); (4) the peak A corresponds to the peak Pt (Pt at the peak must be in the top 15%); and
(5) a relatively high average magnetic field strength ⟨B⟩ > 5 nT to exclude small fluctuations.
Thus, in summary, the algorithm generates a list of nonoverlapping intervals containing time-static

magnetic fields satisfying the hypothesis of being 2.5D magnetostatic structures where each field
line is crossed twice and having a strong axial current density and magnetic field strength. GS
reconstruction of the detected events usually (but not always) reveals the presence of a flux rope,
although the impact parameter is often so high that none of the field lines that are closed in the map
cross the spacecraft path, hinting at significant uncertainty. It is worth emphasizing that the original
algorithm does not perform GS reconstruction on the detected events; rather, the significant current
density and crossing of field lines twice is assumed to correspond to a flux rope.

B. ALGORITHM TO FIND CORE CLOSED REGION

To find the core region with closed transverse field lines in a reconstructed map A(x, y), we introduce
the following procedure. First, we normalize A(x, y) so that A(x, y0) (where the line segment y =
y0 is the observed strip of the interval) starts at 0, peaks at +1, then goes back to 0. Then,
we construct another map called visited, which starts with all zeros except at the peak position
along y0, which is initialized to 1. Then, we run the following in a repeating loop: For each pixel
x, y, retrieve the largest neighboring value in a 3x3 square max(visited(x ± 1, y ± 1)). Where
max(visited(x ± 1, y ± 1)) > A(x, y), update visited(x, y) → A(x, y). Where max(visited(x ±
1, y ± 1)) < A(x, y), update visited(x, y) → max(visited(x ± 1, y ± 1)) unless max(visited(x ±
1, y ± 1)) = max(visited) and A(x, y) has the greatest value out of those pixels whose neighbor is
the current maximum visited(x, y), in which case update visited(x, y) → A(x, y). visited is only
ever updated where the change would increase its value. When there are no further changes, the loop
ends. At the end, there is a single peak of visited which is the peak connected to the observed peak
A(x, y0) by following the steepest increase of A(x, y) from the observed peak. For the monotonically
decreasing region around the peak, visited(x, y) = A(x, y). If there is a region where A(x, y) starts
increasing again, then visited(x, y) < A(x, y) there. Hence the largest closed transverse field line
is equivalent to the contour around the region of visited that is greater than the largest value of
visited at the boundaries of the reconstructed map, or the largest value of visited(x, y) where
visited(x, y) < A(x, y), or 0, whichever is greatest. We have tested this procedure and found that
it successfully identifies the closed flux rope region contained in the map of A(x, y).
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